

Fast Analysis of Syngas Using a Micro-Machined Gas Chromatograph System with a Thermal Conductivity Detector

Presented by Debbie Hutt
Gulf Coast Conference
Wednesday, October 17, 2012
9:20 AM
Galveston, TX

Presentation Outline

- Introduction
- Syngas Composition
- Syngas Produced from Coal Gasification
 - Environmental Implications
 - Industry Example
- Syngas Produced from Natural Gas (Steam Methane Reforming)
 - Environmental Implications
 - Industry Example
- Gas Chromatography as an Analysis Option
- 3000 Micro GC Data and Repeatability

Introduction

- Syngas is an intermediate gas produced from:
 - 1. Coal gasification, through pyrolysis to coke (destructive distillation), followed by:
 - $C + H_2O \rightarrow CO + H_2$
 - Combustion: C + O₂ → CO₂
 - Gasification: CO₂ + C → 2CO
 - 2. Natural gas, through steam methane reforming (SMR)
 - SMR reaction: $CH_4 + H_2O \rightarrow CO + 3 H_2$
 - Recovery of additional hydrogen: CO + H₂O → CO₂ + H₂
- Biomass can be either gasified or steam reformed

Syngas Composition

- Syngas contains:
 - Hydrogen (~50-70%)
 - CO (~25-50%)
 - CO₂ (~5-20%)
 - CH₄ (< 5%)
 - May also contain:
 - Nitrogen (~2-5%)
 - Ethane (C₂H₆, <1%)
 - Ethylene (C₂H₆, <1%)
 - Water (< 0.1%)
 - Possible "sour" components from gasification of coal:
 - H₂S (mid ppm, <1%)
 - COS (mid ppm, <1%)

Syngas Produced from Coal Gasification

- Industry example: Duke Energy Integrated Gasification Combined-Cycle (IGCC) Plant in Edwardsport, IN
- Driven by EPA standards for cleaner air
- Coal is converted to syngas, which is then introduced into turbines to produce electricity
 - More efficient than direct coal combustion

Coal Gasification Environmental Implications

- Provides 10x more electricity than a traditional energy plant with:
 - 70% lower sulfur dioxide, nitrogen oxides, and particulates
 - 30% less water consumption
 - Produces less solid waste
- The plant produces elemental sulfur and slag as byproducts, which can be sold for agricultural and constructional uses
- Displays a potential for carbon dioxide capture and storage

Coal Gasification – Duke Energy Plant

 GE Energy provides technology, such as gasification equipment, power generation and control equipment, and analytical services

Syngas Produced from Natural Gas

- Steam methane reforming (SMR) is used to produce syngas from stranded (or associated) natural gas that would otherwise be wasted
- Syngas can be converted, via the Fischer-Tropsch (FT) Process, to higher hydrocarbon synthetic fuels
- Industry Example: Velocys, Inc. partnered with Oxford Catalysts, Plain City, OH

SMR Environmental Implications

- Utilizes stranded (or associated) natural gas
 - Approximately 5 trillion cubic feet (TCF) of natural gas is not utilized each year worldwide
 - Equivalent of 500 million barrels of liquid fuel
 - The stranded gas can be:
 - · Vented back into the atmosphere
 - Outlawed because methane has a global warming potential 21 times that of CO₂
 - Flared
 - Releases 200 million tons of CO₂ into the atmosphere
 - Banned in many countries
 - Re-injected into a reservoir
 - High cost
 - Converting stranded natural gas to liquid fuels is a greener option

SMR Environmental Implications

- Biomass can also be converted to liquid fuels
 - The US Department of Energy (DOE) estimates that there is enough domestic biomass to replace half of the petroleum-based distillate fuel demand in the US
 - Considered a renewable energy source
 - Sources of biomass include:
 - Municipal waste
 - Forest residues
 - Agriculture residues
 - Construction and demolition wasters

Natural Gas to Synthetic Liquid Fuels

- Steps to produce synthetic fuels from natural gas:
 - 1. Natural gas enters a SMR reactor to generate syngas
 - 2. Syngas is cooled, and water is removed
 - 3. Syngas composition is analyzed
 - 4. Syngas is fed to another reactor and passed over a catalyst to produce synthetic liquid fuels (FT Process)

Steam Methane Reforming

- Natural gas is mixed with steam and passed over a catalyst to break off hydrogen molecules to generate CO and H₂
 - Highly endothermic process
- Excess methane and hydrogen is burned in air to produce heat

Syngas Conversion to Synthetic Liquid Fuels

- Once through SMR, water and heat are removed from syngas
- Syngas is converted to liquid fuels by using the FT Process based on the following reaction:

$$nCO + (2n + 1)H_2 \rightarrow C_nH_{2n+1} + H_2O$$

- The cooled gas reacts with a specially designed catalyst to create longer chain hydrocarbons such as:
 - Paraffin waxes
 - Diesel
 - Jet fuel

The Need for Precise Analysis

Requirements:

- Separation and quantification of individual syngas components at the percent level
- A total un-normalized concentration (mole %) ranging from 97 to 103%
- Analysis of results to optimize the system and maximize productivity
 - How much methane is being converted to H₂?
 - How much CO is being converted to CO₂?
- Identification of possible byproducts
 - "Sour" components such as H₂S and COS
 - Ethylene, ethane, nitrogen

Gas Chromatography as an Analysis Option

- Gas chromatography (GC) technology provides separation and analysis capabilities for all syngas components
- GC software provides users with component composition information
- Thermal conductivity detectors (TCD) are universal detectors that provides required sensitivity with simple operation
- TCDs enhance the speed of analysis
 - Syngas monitoring requires close to real time analysis
 - A fast GC instrument like the 3000 Micro GC provides the necessary means
 - Runs are typically less than 2 minutes

Instrumentation

- INFICON 3000 Micro GC (MGC)
 - MEMS based TCDs and injectors
- 2-Channel Configuration
 - Each channel contains an injector, column, and TCD detector
 - Channel A: 10m Molsieve 5Å
 - Backflush injector to prevent column contamination and provide excellent precision
 - Argon carrier gas
 - Channel B: 8m PLOT Q (Polystyrenedivinylbenzene)
 - Fixed volume injector to provide excellent precision
 - Helium carrier gas
- 3000 Micro GC highlights:
 - Lightweight
 - Fast
 - Precise

Calibration Gas Standard - SMR

- Calibration gas was supplied by Velocys, Inc.
- Ten runs were conducted sequentially at the Velocys, Inc. facility in Plain City, OH

Component	Mol %
Hydrogen	60.02
Nitrogen	2.010
CH ₄	5.800
CO	24.00
CO ₂	5.000
C ₂ H ₄	2.000
C ₂ H ₆	1.000

3000 Micro GC Method Parameters

Syngas Repeatability Channel A – 10 Runs

Channel	Number of Analyte	Compound	Retention Time	Area %RSD
1	1	Hydrogen	43.90	0.179
1	2	Nitrogen	59.40	0.510
1	3	Methane	73.78	0.245
1	4	СО	88.84	0.212

Syngas Repeatability Channel B – 10 Runs

Channel	Number of Analyte	Compound	Retention Time	Area %RSD
2	5	CO_2	24.42	0.033
2	6	Ethylene	29.60	0.063
2	7	Ethane	33.76	0.084

Syngas Repeatability – 10 Runs Overlaid

Calibration Gas Standard - Tail Gas Combustion

- The 3000 Micro GC can also analyze the tail gas stream for heat generating combustion
- Method parameters are identical to SMR

Component	Mol %
Hydrogen	4.878
Oxygen	3.383
Nitrogen	83.652
CH ₄	0.476
CO	5.062
CO ₂	2.506

Combustion Gas Repeatability Channel A- 4 Runs

Channel	Number of Analyte	Compound	Retention Time	Area %RSD
1	1	Hydrogen	44.10	0.146
1	2	Oxygen	51.58	0.676
1	3	Nitrogen	59.42	0.034
1	4	Methane	74.38	0.646
1	5	СО	91.24	0.589

Combustion Gas Repeatability Channel B— 4 Runs

Channel	Number of Analyte	Compound	Retention Time	Area %RSD
2	6	CO_2	24.76	0.233

Combustion Gas Repeatability – 4 Runs Overlaid

Conclusion

- Syngas is an intermediate gas in a series of reactions to generate power or fuel
- GC technology offers superior analysis for syngas
- Within 2 minutes, sample are separated and quantified to assist operators in maximizing the efficiency of their technology using the 3000 Micro GC
 - An RSD of less than 0.7% can be achieved for all syngas and combustion gas components

References

- IGCC at a Glance. 2011.
 - http://www.duke-energy.com/pdfs/DukeEnergy_Edwardsport_FactSheet_Sept2011.pdf (accessed January 09, 2012)
- Edwardsport Integrated Gasification Combined Cycle (IGCC) Station. 2011.
 http://www.duke-energy.com/pdfs/IGCC-Fact-sheet-12.10.pdf (accessed January 09, 2012)
- A Milestone for Cleaner Coal Technology: Key Equipment Arrives at Duke Energy's IGCC Plant in Indiana. Press Release. 2009.
 - http://www.genewscenter.com/Press-Releases/A-Milestone-for-Cleaner-Coal-Technology-Key-Equipment-Arrives-at-Duke-Energy-s-IGCC-Plant-in-Indiana-1bca.aspx (accessed January 09, 2012)
- Tonkovich, A.L.; Jarosch K.; et al; Microchannel Gas-to-Liquids for Monetizing Associated and Stranded Gas Reserves. 2011. http://www.velocys.com/press/wp/wp110206_microchannel_GTL_White_Paper_06021 1[1].pdf (accessed November 14, 2011)
- Tonkovich, A.L.; Mazanec, T.; et al; Gas-to-Liquids Conversion of Associated Gas Enabled by Microchannel Technology. 2009. http://www.velocys.com/press/wp/wp091504_%20associated_gas_white_paper_may09.pdf (accessed November 14, 2011)

Visit booth #320

or

Visit our website www.INFICON.com for more information

Questions?

